信息论与编码课程论文zw

2025-11-01 11:08:01 4阅读

信息论与编码课程论文----现代通信与香农三大定理学号:2013141443032 姓名: 张蔚引言:信息论是信息科学和技术的基本理论,信息科学大厦的地基。没有信息论的基础,从事通信和信息理论的研究和创新是不可能的事情。当我们提起信息论,就不得不把香农和信息论联系在一起,因为正是香农为通信理论的发展所做出的划时代贡献,宣告了一门崭新的学科——信息论的诞生。通信的目的是为通信双方传递有用信息,通信系统关心和研究的问题是如何提高通信的有效性和可靠性。而通信系统的有效性和可靠性是一对矛盾。香农三大定理是信息论的基础理论。香农三大定理是存在性定理,虽然并没有提供具体的编码实现方法,但为通信信息的研究指明了方向。香农第一定理是可变长无失真信源编码定理。香农第二定理是有噪信道编码定理。香农第三定理是保失真度准则下的有失真信源编码定理。从此,在香农信息论的指导下,为了提高通信系统信息传输的有效性和可靠性,人们在信源编码和信道编码两个领域进行了卓有成效的研究,取得了丰硕的成果。其实,信息论是人们在长期通信实践活动中,由通信技术与概率论、随机过程、数理统计等学科相互结合而逐步发展起来的一门新兴交叉学科。 关键词: 信息论基础 现代通信系统 香农三大定理 上个世纪四十年代,半导体三极管还未发明,电子计算机也尚在襁褓之中。但是通信技术已经有了相当的发展。从十九世纪中叶,电报就已经很普遍了。电报所用的摩斯码(Morse Code),就是通信技术的一项杰作。摩斯码用点和线(不同长度的电脉冲)来代表字母,而用空格来代表字母的边界。但是每个字母的码不是一样长的。常用的字母 E 只有一个点。而不常用的 Z 有两划两点。这样,在传送英语时,平均每个字母的码数就减少了。事实上,摩斯码与现代理论指导下的编码相比,传送速度只差 15%。这在一百五十多年前,是相当了不起了。 在二次世界大战时,雷达和无线电在军事上广泛应用。无线电受各种噪声的干扰很厉害,这也给通讯技术提出了新的课题。各种不同的调制方式也纷纷问世。于是就出现了这样一个问题:给定信道条件,有没有最好的调制方式,来达到最高的传送速率? “传输速率是波特率与每波特所含比特数的乘积。波特率受频宽的限制,而每波特所含比特数受噪声的限制。”前一个限制,由那奎斯特(Harry Nyquist)在 1928年漂亮地解决了。而后一个问题则更复杂。1928 年,哈特利(R. V. L. Hartley)首先提出了信息量的概念,并指出编码(如摩斯码)在提高传送速度中的重要作用。但是他未能完整定量地解决这个问题。二战期间,维纳(Norbert Wiener)发展了在接收器上对付噪声的最优方法。但是传输速率的上限还是没有进展。 在这种情况下,香农(Claude E Shannon)在 1948 年发表了《通信的一个数学理论》(C. E. Shannon, A Mathematical Theory of Communication”, The Bell System Technical Journal, Vol. 27, pp. 379-423, 1948 )完整地解决了通讯速度上限的问题。“信息论”(Ination Science)从此诞生。 要建立信息理论,首先要能够度量信息。信息是由信号传播的。但是信息与信号有本质的区别。所以如何度量一个信号源的信息量,就不是简单的问题。从直觉上说,如果一个信号源发出不变的符号值(比如总是 1),它是没有信息量的,因为它没有告诉别人任何东西。而且如果信号源发出的符号值是变化的但是可以预计的(比如圆周率的数字序列),那也是没有信息量的,因为我不需要接受任何东西,就可以把这些符号值重复出来。而且,即使信号源发出的符号不是完全可确定的,它的信息量也和“确定”的程度有关。例如,如果一个地方 90%的时候是晴天,气象报告就没有多大用处。而如果 50%的时候是晴天其余时候下雨,人们就需要气象报告了。 从这点出发,香农就把信息量与信号源的不确定性,也就是各个可能的符号值的几率分布联系起来。他从直观上给出了信息量需要满足的几个简单的数学性质(如连续性,单调性等),而给出了一个唯一可能的表达形式。 那么这样定义的信息量与我们通常所说的数据量,也就是需要多少比特来传送数据,有什么关系呢?(比特就是二进制数据的位数)。为此,我们来看看一个含有固定符号数的序列(也就是信号或码字)。由于每个符号值的出现是随机的,这样的序列就有很多可能性。显然,每个可能的符号在序列中出现次数,对于所有可能序列的平均值正比于符号出现的几率。我们把每个符号出现次数“正好”等于其次数平均值的序列叫做“典型序列”,而其他的就叫作“非典型序列”。而数学上可以证明,当 N 趋于无穷大时,“非典型序列”出现的几率趋于零。也就是说,我们只要注意“典型序列”就行了。而典型序列的个数,就是它们出现概率的倒数(因为总概率为 1)。而码字所携带的数据量,就是它的个数以 2 为底的对数。所以,这样的分析就得出了序列所含的数据量。除以序列的长度,就得到每个符号所含的数据量。而这个结果恰好就等于上面所说的信息量! 至此,香农开创性地引入了“信息量”的概念,从而把传送信息所需要的比特数与信号源本身的统计特性联系起来。这个工作的意义甚至超越了通信领域,而成为信息储存,数据压缩等技术的基础。 解决了信号源的数据量问题后,我们就可以来看信道了。信道(channel)的作用是把信号从一地传到另一地。在香农以前,那奎斯特已经证明了:信道每秒能传送的符号数是其频宽的一半。但问题是,即使这些符号,也不是总能正确地到达目的地的。在有噪声的情况下,信道传送的信号会发生畸变,而使得接收者不能正确地判断是哪个符号被发送了。对付噪声的办法是减少每个符号所带的比特数:“而每个波特所含的比特数,则是受噪声环境的限制。这是因为当每个波特所含的比特数增加时,它的可能值的数目也增加。这样代表不同数据的信号就会比较接近。例如,假定信号允许的电压值在正负 1 伏之间。如果每个波特含一个比特,那么可能的值是 0 或 1。这样我们可以用-1 伏代表 0,用 1 伏代表 1。而假如每波特含两个比特,那么可能的值就是 0,1,2,3 。我们需要用-1 伏,-0.33 伏,0.33 伏,1 伏来代表着四个可能值。这样,如果噪声造成的误差是 0.5 伏的话,那么在前一种情况不会造成解读的错误(例如把-1V 错成了-0.5 伏,它仍然代表 0)。而在后一种情况则会造成错误(例如把-1V 错成了-0.5 伏,它就不代表 0,而代表 1 了)。所以,每个波特所含的比特数也是不能随便增加的。以上两个因素合起来,就构成了对于数据传输速率的限制。”其实,除此之外,还有一个对付噪声的办法,就是在所有可能的符号序列中只选用一些来代表信息。例如,如果符号值是 0 和 1,那么三个符号组成的序列就有 8 个:000,001,010 ,011,100,101,110 ,111。我们现在只用其中两个来代表信息:000 和111。这样,如果噪声造成了一个符号的错误,比如 000 变成了 010,那我们还是知道发送的是 000 而不是 111。这个方法的代价与前面的方法

免责声明:由于无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如我们转载的作品侵犯了您的权利,请您通知我们,请将本侵权页面网址发送邮件到qingge@88.com,深感抱歉,我们会做删除处理。