相似度计算的三种方式

2025-10-29 19:05:20 4阅读

相似度计算的三种方式

欧几里德评价

欧几里得度量(euclidean metric)(也称欧式距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。

0ρ = sqrt( (x1-x2)^2+(y1-y2)^2 )

similarity = 1/(op + 1)

最终的similarity就是相似度评价的值

皮尔逊相关评价

皮尔逊相关系数是一种度量两个变量间相关程度的方法。它是一个介于 1 和 -1 之间的值,其中,1 表示变量完全正相关, 0 表示无关,-1 表示完全负相关。

相关公式:

这里写图片描述

皮尔逊相关的约束条件

从以上解释, 也可以理解皮尔逊相关的约束条件:

1 两个变量间有线性关系

2 变量是连续变量

3 变量均符合正态分布,且二元分布也符合正态分布

4 两变量独立

在实践统计中,一般只输出两个系数,一个是相关系数,也就是计算出来的相关系数大小,在-1到1之间;另一个是独立样本检验系数,用来检验样本一致性.

适用范围

适用于A的评价普遍高于B的评价

Tanimoto分值

公式如下图所示:

度量两个集合之间的相似程度的方法。

A=

B=

C = A & B =

T = Nc / ( Na + Nb -Nc) = len(c) / ( len(a) + len(b) - len(c)) = 2 / (4+3-2) = 0.4

可以用户计算用户之间的相似程度

相关资料

http://www.tuicool.com/articles/vuiU3uu

http://blog.sina.com.cn/s/blog_618985870101jmnp.html

免责声明:由于无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如我们转载的作品侵犯了您的权利,请您通知我们,请将本侵权页面网址发送邮件到qingge@88.com,深感抱歉,我们会做删除处理。